a)
The diagram shows an optimal behavior for a PID controller.
b)
After the setpoint has been specified, the process value increases steeply until the proportional band is reached. When the process value reaches the proportional band, the P component is reduced and the I component ensures that the setpoint value is reached. Due to the relatively large setting of Tn, the increase of the I component is slow and the control deviation is slowly eliminated. For faster integration, Tn must be set smaller; Tv is also reduced according to the ratio Tv/Tn = 1/4.
c)
When the process value enters the proportional band, the I component increases the output ratio. The increase continues until the process value reaches the setpoint. In the case shown, the I component builds up too much output until the control deviation is eliminated, and the process value exceeds the setpoint. With the presence of a negative system deviation, the output level is reduced too quickly, the actual value falls below the setpoint, etc. The symmetrical oscillation of the actual value around the setpoint indicates that Tn is set too small. Tn must be increased and Tv must also be increased according to the ratio Tv / Tn = 1/4.
d)
The I component is formed from the time the process value enters the proportional band until the control deviation is eliminated. Due to the large setting of Xp, the I component starts to form the output ratio already at a large control deviation. Due to the large control deviation at the beginning, the I component forms its output ratio relatively quickly. When the control deviation is eliminated, the I component is too large and the actual value exceeds the setpoint. With a smaller setting for Xp, the I component starts to build up its output level correspondingly slower only with smaller control deviations. The one-time overshoot shown becomes less likely.
e)
If XP is set too low, the output level of the P component is reduced shortly before the setpoint is reached. When the process value enters the proportional band, the P component is reduced very much and the process value drops. Due to the larger control deviation, the output ratio increases and the actual value rises. In the proportional band, small changes in the actual value lead to large changes in the output ratio, which results in a high tendency to oscillation. Calming down is achieved by increasing the proportional band.